Floating Wetlands for Enhanced Treatment in Stormwater Management Ponds

A. SHANE1, B. ANDERSON1, B. WOOTTON2, J. CLARK3

1Department of Civil Engineering, Queen’s University, Kingston, Ontario | 2Centre for Alternative Wastewater Treatment, Fleming College, Lindsay, Ontario | 3C&M Aquatic Management Group

Introduction

• Conventional stormwater ponds have limited ability to improve water quality.
• The Floating Wetlands are being assessed as a treatment system for water quality improvement in stormwater ponds through microbial action in the root mass and nutrient translocation to the plant biomass.
• The study looks at removal of nutrients (phosphorus and nitrogen), contaminants (E.coli and microcystins) and trace metals

Methods

Field scale study

• Floating wetlands were constructed and placed on nine of fifteen ponds
• Floating pond size: 5.2m by 9.14m per pond
• Field scale study composed two controls and three treatments each with three replicates:
 - Control 1: no covering, no input
 - Control 2: covering, no input
 - Treatment 1: no covering, low input
 - Treatment 2: no covering, high input
 - Treatment 3: covering, high input
• Water quality parameters:
 - pH, Dissolved Oxygen, temperature, conductivity,
 - Nutrients: Phosphorus (TP, orthophosphate, acid hydrolyzable), Nitrogen (NH3, NO3/NO2)
 - Pathogens: Total coliform/E.coli, microcystins

Mesocosm study

• Study composed of fourteen 140L bins
• Floating wetlands were placed on eight of the fourteen bins
 - four bins with floating wetlands
 - four bins with floating mat (no plants)
 - six bins without floating wetland
• Water quality parameters:
 - pH, Dissolved Oxygen, water temperature, conductivity,
 - Nutrients: Phosphorus (TP, orthophosphate, acid hydrolyzable), Nitrogen (NH3, NO3/NO2)
 - Pathogens: Total coliform/E.coli, microcystins

Preliminary Results

• Phosphorus levels are reduced through time (see Figure 8)
 - A result of phosphorus uptake by plants and biofilm
• Dissolved oxygen levels are very low in ponds with mats (see Figure 7)
 - Reasons: lack of water movement due to coverage, mats inhibits diffusion and reduce algal growth
• Chlorophyll a levels are decreased in bins with mats (see Table 1)

Future Research

• Testing for Microcystin removal
• Increased testing on E.coli removal by mats (indoor lab scale study)

Table 1: Average chlorophyll a levels for bins (with and without coverage) Summer of 2011

<table>
<thead>
<tr>
<th>Date of Collection</th>
<th>no mat</th>
<th>mat with plants</th>
<th>mat without plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>September-26-11</td>
<td>3.85</td>
<td>1.16</td>
<td>1.61</td>
</tr>
<tr>
<td>October-10-11</td>
<td>2.97</td>
<td>2.02</td>
<td>3.19</td>
</tr>
<tr>
<td>October-17-11</td>
<td>4.64</td>
<td>3.87</td>
<td>3.06</td>
</tr>
<tr>
<td>October-24-11</td>
<td>6.23</td>
<td>2.72</td>
<td>2.16</td>
</tr>
<tr>
<td>October-31-11</td>
<td>4.15</td>
<td>2.38</td>
<td>0.61</td>
</tr>
<tr>
<td>November-07-11</td>
<td>4.33</td>
<td>2.57</td>
<td>2.38</td>
</tr>
</tbody>
</table>

Figure 1: Pond 1 (high inputs with mat covering) located at the research site at Fleming College, Lindsay, ON

Figure 2: Pond 4 (no mat no input) located at research site at Fleming College, Lindsay ON

Figure 3: Aerial view of the research site at Fleming College, Lindsay, ON

Figure 4: Mesocosm study of the fourteen bins

Figure 5: Floating wetlands with and without plants (Nov. 10 2011)

Figure 6: Visual of engineered Floating Wetland

Figure 7: Dissolved Oxygen levels in ponds (with and without coverage) Summer of 2011

Figure 8: Total phosphorus levels in mesocosm study (top) and field study (bottom) over the summer of 2011. Values based on averages of all bins and ponds

Figure 9: Growth on floating wetlands in summer 2010, June 2011, and August 2011

Sponsors

NSERC CRSGN

Fleming College

The Centre for Alternative Wastewater Treatment